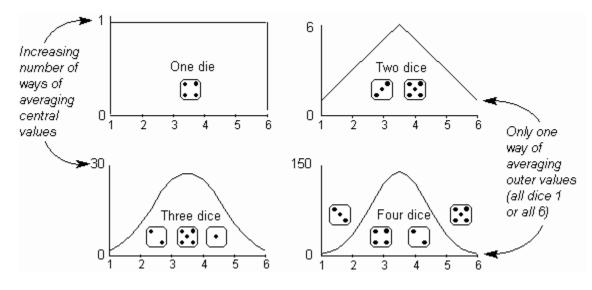
Unifications	of Techniques: See the Wholeness and Many-Fold ness	1	
Population	μ, σ^2 Expected value and Variance both unknown	-	
Continuous	Must be estimated with confidence.		
R.V.	Homogenous population		
Population	$\mu = \sum (xi \ pi) = E(x);$		
Discrete	$\sigma^{2} = (Ex^{2}) - (Ex)^{2} = \sum (xi^{2} pi) - [\sum (xi pi)]^{2};$	Binomial	x success in n trial with π
R.V.	$\sigma = \sqrt{\sigma^2}$	Probability	is probability success
Sample (s)		Distribution	P(x) =
Sample (8)	$\overline{x} = \frac{\Sigma x}{n}; \ s^2 = \frac{\Sigma (x - \overline{x})^2}{n - 1} = \frac{SS}{n - 1}, \ ss = Sum(x^2) - (Sum x)^2 / n,$		$\frac{n!}{x! (n-x)!} \pi^x (1-\pi)^{n-x}$ $\mu = n \pi; \sigma^2 = n \pi (1-\pi)$
	$C.V. = \frac{s}{2}$		x!(n-x)!
Probability:	x $P(A \cap B)$		$\mu = n \pi; \sigma^2 = n \pi (1 - \pi)$
Flobability.	P(A given B)=P(A B) = P(A and B)/ P (B) = $\frac{P(A \cap B)}{P(B)}$		theorem: Sampling
	$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$	distribution of	f mean tends to be normal
	A and B are independent if $P(A B) = P(A)$	density as the	e (fixed) sample size
		increases. $\mu = \mu_{\overline{x}}$ and $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$ if	

σ unknow, use s

CLT in Action:



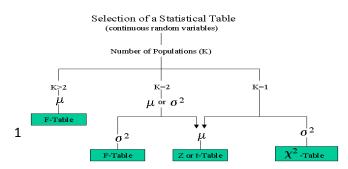
For the parent population the **expected value** is:

 $\mu = \sum (xi \, pi) = E(x) = 1(1/6) + 2(1/6) + 3(1/6) + 4(1/6) + 5(1/6) + 6(1/6) = 21/6$ which the same for the other 3 sampling means distributions.

For the parent population the **variance** is:

$$\sigma^{2} = (Ex^{2}) - (Ex)^{2} = \sum (xi^{2} pi) - (Ex)^{2} = 1(1/6) + 4(1/6) + 9(1/6) + 16(1/6) + 25(1/6) + 36(1/6) - (21/6)^{2} = 4.04$$

The variance for the others is $\frac{\sigma^2}{n} = 4.04/2 = 2.02$, 4.04/3 = 1.37, 4.04/4 = 1.01, respectively, it get smaller as sample size increases.



	For Population	For sampling distribution with sample size $= n$
Z- statistic	$Z = \frac{x - \mu}{\sigma} \text{ to make}$ N(0,1)	$Z_{\bar{x}} = \frac{\bar{x} - \mu_{\bar{x}}}{\sigma_{\bar{x}}} = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} \sim = \frac{\bar{x} - \mu}{s/\sqrt{n}} \text{ (in that } \mu_{\bar{x}} = \mu \text{ and } \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \text{ and large n, invoke}$ the CLT)
T- statistic	Normal	$T_{\bar{x}} = \frac{\bar{x} - \mu}{s / \sqrt{n}}$ with small n, but population is Normal

Notice the difference: The Z-score, Z-transformation $=\frac{x-\bar{x}}{s}$, is used to make data dimensionless, often for comparison purposes. For example price of the houses and their sized in Washington DC., and Tokyo.

Estimation with Confidence

	1 Population	2 Populations
Population mean µ	$\overline{\overline{x} \pm z_{\frac{\alpha}{2}}} \sigma_{\overline{x}} = \overline{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ $\overline{x} \pm t_{\frac{\alpha}{2}} \sigma_{\overline{x}} = \overline{x} \pm t_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \text{ (with } v = n-1\text{)}$	$\overline{x_1} - \overline{x_2} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ \overline{x_1} - \overline{x_2} \pm t_{\frac{\alpha}{2}} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \\ \text{(With pooled estimate for S: } s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \text{)}$
Population proportion (probability) $(p=\frac{x}{n})$ Sample are sufficiently large	$\mu_p = \pi \text{ true population proportion of success.}$ $\sigma_p = \sqrt{\frac{\pi (1-\pi)}{n}}$ $P \pm z_{\frac{\alpha}{2}} \sqrt{\frac{p (1-p)}{n}}$	$(v = n_1 + n_2 - 2)$ $P_1 - P_2 \pm Z_{\frac{\alpha}{2}} \sigma_{(p1-p2)} = P_1 - P_2 \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{p_1(1-p_1)}{n_1} - \frac{p_2(1-p_2)}{n_2}}$
Means: 2pops Matched pairs	Known also as the " <i>before-and-after</i> " test Large sample size (CLT) if the d is not normal	$\mu_{d} = (\mu_{1} - \mu_{2})$ $\overline{d} \pm z_{\frac{\alpha}{2}} \frac{\sigma_{d}}{\sqrt{n}} = \overline{d} \pm z_{\frac{\alpha}{2}} \frac{S_{d}}{\sqrt{n}} (\text{if } \sigma_{d} \text{ unknown with large sample})$ $\overline{d} \pm tz_{\frac{\alpha}{2}} \frac{\sigma_{d}}{\sqrt{n}} = \overline{d} \pm t_{\frac{\alpha}{2}} \frac{S_{d}}{\sqrt{n}} (\text{if } \sigma_{d} \text{ unknown with small sample})$
Variance σ^2	$\frac{(n-1)s^2}{X_{\alpha/2}^2} \le \sigma^2 \le \frac{(n-1)s^2}{X_{(1-\frac{\alpha}{2})}^2}$	$\overline{d} \pm t \overline{z}_{\frac{\alpha}{2}} \frac{\sigma_d}{\sqrt{n}} = \overline{d} \pm t \frac{s_d}{z} \frac{S_d}{\sqrt{n}} \text{ (if } \sigma_d \text{ unknown with small sample}$ $\frac{s_1^2}{s_2^2 F(n2-1,n1-1,\frac{\alpha}{2})} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{s_1^2 F(n1-1,n2-1,\frac{\alpha}{2})}{s_2^2}$
Determination of sample size for Continuous and Discrete R.V.	with d margin of error: $n = \frac{z_{\alpha/2}^2 \sigma^2}{d^2}$ With d margin of error for proportion: $n = \frac{z_{\alpha/2}^2 \pi (1-\pi)}{d^2}, you may use \pi = 0.5$	

Hypothesis Testing

	1Population	2Populations
	1tailed: Ha: > or (<)	2tailed: Ha: ≠
	Rejection region: $Z > z_{\alpha}$ or $(Z < -z_{\alpha})$	Rejection region: $Z > z_{\frac{\alpha}{2}}$ or $Z < -z_{\frac{\alpha}{2}}$
Pop mean µ	Ho: $\mu = \mu o$ Ha: $\mu \neq \mu o$ For one-sided use $Z > z_{\frac{\alpha}{2}}$ or $Z < -z_{\frac{\alpha}{2}}$) $Z = \frac{\overline{x} - \mu o}{\sigma_{\overline{x}}} \sim = \frac{\overline{x} - \mu o}{s/\sqrt{n}}$ Large sample size to invoke CLT.	Ho: $\mu 1 - \mu 2 = 0$ Ha: $\mu 1 - \mu 2 \neq 0$ $Z = \frac{\overline{x1 - x2}}{\sigma \overline{x1} - \sigma \overline{x2}} \sim = \frac{\overline{x1 - \overline{x2}}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ If variances are almost the same, then use $t = \frac{\overline{x1 - \overline{x2}}}{\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$ with table $v = n1 + n2 - 2$
Population proportion (probability) $(\pi \rightarrow p = \frac{x}{n})$ Sample are sufficiently large	Ho: $\pi = \pi o$ Ha: $\pi \neq \pi o$ $Z = \frac{P - \pi o}{\sqrt{\frac{\pi o (1 - \pi o)}{n}}}$ Large sample size to invoke CLT.	Ho: $\pi 1 - \pi 2 = 0$ Ha: $\pi 1 - \pi 2 \neq 0$ $Z = \frac{P1 - P2}{\sigma of_{(P1 - P2)}} = \frac{P1 - P2}{\sqrt{pq(\frac{1}{n_1} + \frac{1}{n_2})}}$ With $p = \frac{x1 + x2}{n1 + n2}$ and $q = 1$ -p, large sample size.
Population variance	Ho: $\sigma^2 = \sigma_0^2$ Ha: $\sigma^2 \neq \sigma_0^2$ 2tailed: $X^2 > X_{1-\alpha/2}^2$ or $X^2 < X_{\alpha/2}^2$ 1tailed: $X^2 > X_{1-\alpha}^2$ (or $X^2 < X_{\alpha}^2$) With v = n-1 $X^2 = \frac{(n-1)s^2}{\sigma_0^2}$ Population is normal	Ho: $\frac{\sigma_1^2}{\sigma_2^2} = 1$ Itailed: Ha: $\frac{\sigma_1^2}{\sigma_2^2} > 1$ F= $\frac{s_1^2}{s_2^2}$, critical value F_{α} (n1-1, n2-1) Itailed: Ha: $\frac{\sigma_1^2}{\sigma_2^2} < 1$ F= $\frac{s_1^2}{s_2^2}$, critical value $1/F_{\alpha}$ (n2-1, n1-1) 2tailed: Ha: $\frac{\sigma_1^2}{\sigma_2^2} \neq 1$, $\mathbf{F} = \frac{Larger \ variance}{Smaller \ variance}$, critical value $F_{\alpha/2}$ (n1-1, n2-1), Populations are normal
Population mean for Pair matched	There is dependency, known also as the <i>"before-and-after"</i> test. Large sample size (CLT) if the d is not normal	Ho: $\mu 1 - \mu 2 = 0$ Ha: $\mu 1 - \mu 2 \neq 0$, $\mathbf{Z} = \frac{\overline{a}}{\sigma_d / \sqrt{n}} = \frac{\overline{a}}{s_d / \sqrt{n}}$